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Abstract: The Quantum Era represents both an opportunity and a challenge for software 

and hardware fields. The continued developments have produced quantum prototype 

computers, making them suitable for testing the qubit theory. Thus, by increasing the 

computational degree, the security part should be considered to produce a secure quantum 

computational environment. In this line, our paper presents the notions of quantum 

computing and encryptions, along with dedicated examples, which are helpful for teaching 

processing. The hands-on example helps the students understand the first steps in the RSA 

encryption process.       
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1. Introduction 

Quantum computers are a new computing device that uses quantum 

mechanics, a branch of physics that describes the behavior of matter and energy on 

a small scale. These devices have the potential to revolutionize computing by 

providing a way to solve particular problems much faster than traditional 

computers (Djordjevic, 2022) (Koževnikov, 2020). Quantum computer networks 

are networks of quantum computers connected. These networks enable the 

collaboration of several quantum computers to address intricate issues that are 

beyond the capabilities of a single quantum computer (Sutor, 2019), (Van Meter, 

2014). In addition to the applications mentioned above, quantum computers 

possess numerous ancillary use cases. Furthermore, the advent of the quantum era 

has impacted the 5G and beyond/6G communication systems. Previous generations 

predominantly depended on symmetric key cryptography for security and privacy. 

Consequently, in response to the threat posed by quantum computing, mobile 

broadband standards have opted to transition from symmetric key encryption to 

PKI-based trust models. Current cryptographic techniques, particularly public key 
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encryption and digital signatures, face a significant danger. Symmetric encryption 

and hash functions remain secure in the post-quantum world. Research on 

cryptosystems for the post-quantum era is continuing. The pace was sluggish in the 

early years but has accelerated in recent years. The National Institute of Standards 

and Technology (NIST) has unveiled a strategy to request, assess, and standardize 

post-cryptographic algorithms (Chamola et al., 2021), (Suomalainen et al., 2025). 

One of the most promising quantum computing applications is cryptography and 

cyber security. Moreover, they possess the capacity to profoundly influence 

cybersecurity since they can compromise several encryption techniques presently 

employed to safeguard data (Bertaccini, 2022). These networks are still in their 

infancy and are presently developed by researchers and technology companies 

worldwide. The main advantage of quantum computer networks is their ability to 

solve particular problems much faster than classical computers. Quantum 

computers are particularly suited to solving optimization, machine learning, and 

cryptography problems. Encryption is converting data into a code that unauthorized 

parties cannot read (Mihailescu & Nita, 2023). Encryption protects sensitive 

information such as financial transactions, medical records, and government 

secrets. Currently, encryption is based on mathematical problems that are difficult 

to solve, even for traditional computers. Quantum computers have the ability to 

solve some problems at a significantly quicker rate than traditional computers, 

hence rendering many existing encryption schemes ineffective (Mihailescu & Nita, 

2021). Quantum computers can render the RSA algorithm ineffective, which is a 

commonly employed encryption method for safeguarding sensitive data. The RSA 

algorithm relies on the computational challenge of decomposing big integers into 

their prime components. Conventional computers are capable of solving this issue; 

however, when dealing with big numbers, the computational time required is 

significantly increased (Nita & Mihailescu, 2022). Quantum computers have the 

capability to solve this issue at a much-accelerated rate, enabling them to break 

RSA encryption. Quantum computers have the capability to decrypt the elliptic 

curve cryptography (ECC) technique. This algorithm ensures the security of data 

transmitted over the Internet, including the establishment of secure connections 

between websites and users (Grasselli, 2021). ECC encryption is based on the 

computational complexity of specific mathematical equations. However, the advent 

of quantum computers has introduced a significant challenge since they are capable 

of solving these equations at a considerably quicker rate compared to ordinary 

computers. Consequently, quantum computers have the potential to compromise 

ECC encryption (Bassoli et al., 2021), (Wolf, 2021). Based on the above 

information, e-learning computational quantum techniques and applying them in 

the real-world, will produce many challenges for both educators and students. The 

difference between bit and qubit and how the quantum era will influence the 

computation ability will highlight new teaching methods in the frame of e-learning. 

Our paper presents a theoretical-practical method in which the student has both 

theory and hands-on experience via the CrypTool environment. The great 

advantage of this is that students can access the information at any time. The  
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e-Learning platform is designed to offer information, answers, and hands-on 

demonstrations. 

2. The RSA (Rivest-Shamir-Adleman) algorithm 

The RSA algorithm, also known as Rivest-Shamir-Adleman, is a commonly 

utilized cryptographic technique for ensuring safe transmission of data over the 

Internet through the use of public-key encryption. The cryptographic method was 

created in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman. Since then, it 

has gained immense popularity and is now widely utilized worldwide. The system 

operates based on the notion of utilizing two distinct keys: a public key and a 

private key. The public key is employed for data encryption, while the private key 

is utilized for data decryption. The public key can be freely disseminated, but the 

private key must be securely guarded. The security of RSA relies on the 

arduousness of decomposing huge composite numbers into their prime elements. 

The algorithm derives public and private keys by choosing two large prime 

integers, multiplying them, and utilizing the product as the modulus for both the 

public and private keys. The encryption strength is determined by the length of the 

key, with longer keys typically providing greater security. In order to employ RSA 

encryption, the sender utilizes the public key of the receiver to encrypt the 

message. The communication can only be decrypted by the receiver who possesses 

the associated private key. This guarantees that the message can only be viewed by 

the designated recipient, even if a third party intercepts it (Grimes, 2019), 

(Aumasson & Green, 2017). 

2.1 The mathematical approach of the RSA algorithm 

The RSA algorithm is a type of cryptographic technique that uses 

asymmetric encryption. Asymmetric cryptography utilizes a pair of distinct keys, 

namely the public key and the private key. The public key is distributed to all 

individuals, whereas the private key is maintained in secrecy, as its name suggests. 

The following situation can show an instance of asymmetric cryptography: 

• A client (C), such as a browser, transmits its public key to the server (S) 

and makes a request for specific data; 

• The server (S) employs the client's public key to encrypt the data and 

subsequently transmits the encrypted data; 

• The data is received by the client and subsequently decrypted. 

Due to its asymmetry, only the browser can decode the data, even if a third 

party possesses the public key of the browser. The concept of RSA is founded on 

the inherent complexity of factoring big integers.  

The public key comprises two integers, one being the result of multiplying 

two huge prime numbers. The private key is formed from the identical pair of 
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prime numbers. Therefore, if an individual is able to factorize the huge number, the 

private key becomes compromised. Hence, the level of encryption is directly 

proportional to the size of the key, and by increasing the key size by two or three 

times, the encryption strength grows exponentially. RSA keys commonly have 

lengths of either 1024 or 2048 bits. Nevertheless, analysts anticipate that 1024-bit 

keys may soon become vulnerable to decryption. However, up to this point, it 

seems to be an unattainable undertaking. 

2.1.1 Public key generation 

The process of generating the public key consists of the following steps: 

• Choose two primary integers. Assume that A = 41 and B = 47.  

• The initial component of the public key is c = A ·B = 1927. 

• Additionally, we require a diminutive exponent, such as f, with the 

condition that f must be an integer. It is not necessary for it to be a factor 

of Δ(c). 

1 < f < Δ(c)       (1) 

2.1.2 Private key generation 

The process of generating the private key entails the following steps: 

To find Δ(c), we must compute the value of (A-1)(B-1). 

The private key, g, can be calculated as follows: g = h · Δ(c) + 1.  

2.2 RSA using CrypTool environment 

CryptoTool is a free, open-source software tool with cryptographic and 

cryptanalytic functionality. It is designed to help people learn and understand 

cryptographic concepts by providing an easy-to-use interface for experimenting 

with cryptographic algorithms and analyzing their security. The software includes a 

variety of functions, such as encrypting and decrypting messages, generating 

cryptographic keys, and analyzing cryptographic protocols. It supports many 

cryptographic algorithms, including symmetric ciphers, asymmetric ciphers, hash 

functions, and digital signatures. It is commonly used by students, educators, and 

researchers in cryptography and information security. It is available for download 

on various platforms, including Windows, Linux, and macOS. CrypTool has  

four versions. 

CrypTool versions are: 

• CrypTool-Online (CTO for short) offers applications for testing, learning, and 

discovering ancient and modern cryptography. It can be accessed at: 

https://www.cryptool.org/en/cto/; 

• CrypTool 1 (CT1) is the inaugural iteration of CrypTool, which was created in 
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1998 utilizing the C++ programming language. This is a no-cost software for 

cryptography and cryptanalysis that is compatible with Windows operating 

systems. CT1 is accessible in six languages and is the most used e-learning 

package. This can be accessed at: https://www.cryptool.org/en/ct1/ ; 

• CrypTool 2 (CT2) is a contemporary educational software created with 

Microsoft's .NET technology and the C# programming language. It enables the 

observation of cryptography and cryptanalysis. The subject matter 

encompasses the study of encryption and cryptanalysis of ciphers, including its 

fundamental components, as well as the entirety of contemporary 

cryptography. This can be accessed at: https://www.cryptool.org/en/ct2/ ; 

• JCrypTool (JCT) is a user-friendly program that enables students, professors, 

developers, and cryptography enthusiasts to implement and examine 

cryptographic methods. The JCT platform revolutionizes e-learning by 

promoting user engagement in cryptography, algorithm use, cryptographic 

plugin development, and expansion of the JCrypTool platform into novel 

domains. JCrypTool achieved its stable version 1.0.0 in November 2020. The 

majority of its functionality is implemented through more than 100 distinct 

plugins. This can be seen at: https://www.cryptool.org/en/jct/. 

2.2.1 RSA Algorithm with CryptTool 1 (CT1) environment 

The steps to perform encryption and decryption operations with RSA using 

CT1 are as follows: 

1. We open CT1. Either from the Desktop or from the Start menu of the 

Windows operating system; 

2. The application opens. We familiarize ourselves with the platform 

environment and the desktop application; 

3. From the individual menu (see figure 1). for the procedures, select rsa 

cryptosystem – RSA demonstration... 

 

Figure 1. Platform window of the CT1 software 

4. Review the RSA demonstration window. We familiarize ourselves with the 

elements and data that must be generated automatically or filled in manually, making 

a parallel with the mathematical apparatus of the RSA algorithm presented above. 
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5. We click on the Generate prime numbers button, and the window opens, 

where we can generate two different prime numbers. We will select the Miller-

Rabin Test to generate and test the primality of numbers. Afterward, we will leave 

the upper and lower bounds for the two numbers (p and q) as they are and click 

Generate prime numbers, and the output should be similar to Figure 2. The next 

step is to press the Apply button received. 

 
Figure 2. Generation of prime numbers used to encrypt the message 

6. We notice the changes made in the RSA Demonstration window. We 

analyze the obtained RSA parameters and correlate these values with the 

abovementioned mathematical concepts. 

7. In the Enter the message for encryption (see Figure 3) or decryption either 

as text or as hex dump field, enter the text/word we want to encrypt (without the 

quotes): “Quantum Computer Networks and Their Impact on CyberSecurity by V. 

Marascu, M. I. Mihailescu, S. L. Nita, M. Rogobete and C. Racuciu” and click on 

Encrypt button. We observe the changes made: 

 

Figure 3. Generation of prime numbers used to encrypt the message. 
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8. For decryption, we will need to know the values of p and q and the 

encrypted version of the message displayed in the field encryption into ciphertext 

c[i]=m[i]^e (mode n). It must be mentioned that the encryption process is done 

character by character. For the message chosen above (in step 7) for encryption, the 

encrypted version is: “Quantum Computers Networks and Their Impact on 

Cybersecurity by V. Marascu, M. I. Mihailescu, S. L. Nita, M. Rogobete and C. 

Racuciu”. 

The results of the encrypted text via: 

a) the Miller-Rabin Test:  

10900 # 22842 # 18504 # 47010 # 10710 # 22842 # 33521 # 09394 # 26463 # 

34310 # 33521 # 06415 # 22842 # 10710 # 07428 # 08293 # 06205 # 09394 # 

29564 # 07428 # 10710 # 00095 # 34310 # 08293 # 30861 # 06205 # 09394 # 

18504 # 47010 # 42283 # 09394 # 00500 # 23366 # 07428 # 20714 # 08293 # 

09394 # 37508 # 33521 # 06415 # 18504 # 35574 # 10710 # 09394 # 39271 # 

47010 # 09394 # 26463 # 02206 # 24394 # 07428 # 08293 # 06205 # 07428 # 

35574 # 22842 # 08293 # 20714 # 10710 # 02206 # 09394 # 24394 # 02206 # 

09394 # 14261 # 09394 # 16226 # 18504 # 08293 # 18504 # 06205 # 35574 # 

22842 # 47242 # 09394 # 16226 # 04897 # 37508 # 04897 # 09394 # 16226 # 

20714 # 23366 # 18504 # 20714 # 41521 # 07428 # 06205 # 35574 # 22842 # 

47242 # 09394 # 00559 # 04897 # 16252 # 04897 # 09394 # 29564 # 20714 # 

10710 # 18504 # 47242 # 09394 # 16226 # 04897 # 09394 # 25674 # 34310 # 

12284 # 34310 # 24394 # 07428 # 10710 # 07428 # 09394 # 18504 # 47010 # 

42283 # 09394 # 26463 # 04897 # 09394 # 25674 # 18504 # 35574 # 22842 # 

35574 # 20714 # 22842 # 09394 

b) the Solovay-Strassen Test:  

45834 # 23248 # 45045 # 48257 # 53474 # 23248 # 26521 # 41646 # 48332 # 

48449 # 26521 # 03060 # 23248 # 53474 # 07539 # 51764 # 45972 # 41646 # 

44412 # 07539 # 53474 # 49310 # 48449 # 51764 # 43808 # 45972 # 41646 # 

45045 # 48257 # 14081 # 41646 # 27305 # 51552 # 07539 # 37343 # 51764 # 

41646 # 49873 # 26521 # 03060 # 45045 # 22028 # 53474 # 41646 # 21701 # 

48257 # 41646 # 48332 # 39074 # 33764 # 07539 # 51764 # 45972 # 07539 # 

22028 # 23248 # 51764 # 37343 # 53474 # 39074 # 41646 # 33764 # 39074 # 

41646 # 28035 # 41646 # 48206 # 45045 # 51764 # 45045 # 45972 # 22028 # 

23248 # 21969 # 41646 # 48206 # 32659 # 49873 # 32659 # 41646 # 48206 # 

37343 # 51552 # 45045 # 37343 # 38993 # 07539 # 45972 # 22028 # 23248 # 

21969 # 41646 # 41864 # 32659 # 02070 # 32659 # 41646 # 44412 # 37343 # 

53474 # 45045 # 21969 # 41646 # 48206 # 32659 # 41646 # 41889 # 48449 # 

00089 # 48449 # 33764 # 07539 # 53474 # 07539 # 41646 # 45045 # 48257 # 

14081 # 41646 # 48332 # 32659 # 41646 # 41889 # 45045 # 22028 # 23248 # 

22028 # 37343 # 23248 # 41646 
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b) the Fermat Test:  

10575 # 04473 # 15333 # 06712 # 02704 # 04473 # 05718 # 14301 # 04934 

# 05439 # 05718 # 02857 # 04473 # 02704 # 18091 # 13208 # 12444 # 14301 # 

05703 # 18091 # 02704 # 01760 # 05439 # 13208 # 01128 # 12444 # 14301 # 

15333 # 06712 # 05179 # 14301 # 11758 # 02004 # 18091 # 05469 # 13208 # 

14301 # 14929 # 05718 # 02857 # 15333 # 10631 # 02704 # 14301 # 02886 # 

06712 # 14301 # 04934 # 20184 # 05664 # 18091 # 13208 # 12444 # 18091 # 

10631 # 04473 # 13208 # 05469 # 02704 # 20184 # 14301 # 05664 # 20184 # 

14301 # 06028 # 14301 # 20701 # 15333 # 13208 # 15333 # 12444 # 10631 # 

04473 # 13007 # 14301 # 20701 # 20301 # 14929 # 20301 # 14301 # 20701 # 

05469 # 02004 # 15333 # 05469 # 05372 # 18091 # 12444 # 10631 # 04473 # 

13007 # 14301 # 07087 # 20301 # 10103 # 20301 # 14301 # 05703 # 05469 # 

02704 # 15333 # 13007 # 14301 # 20701 # 20301 # 14301 # 08923 # 05439 # 

03688 # 05439 # 05664 # 18091 # 02704 # 18091 # 14301 # 15333 # 06712 # 

05179 # 14301 # 04934 # 20301 # 14301 # 08923 # 15333 # 10631 # 04473 # 

10631 # 05469 # 04473 # 14301  

3. Shor's algorithm (the quantum approach of the RSA algorithm) 

Quantum RSA, or Shor's algorithm, is a computational method in quantum 

computing that may effectively decompose huge numbers into their prime 

components. Mathematician Peter Shor invented this method in 1994, which is 

widely regarded as one of the most crucial quantum algorithms. The RSA 

algorithm is extensively employed in contemporary cryptography for the purpose 

of encrypting and decrypting data. The process relies on decomposing big numbers 

into their prime components, a task that is arduous and time-consuming for 

conventional computers. However, using Shor's algorithm, quantum computers can 

accomplish this task much faster. This means that the development of quantum 

computers threatens the security of RSA encryption. If a large-scale quantum 

computer is built, it could easily break RSA encryption and access sensitive data 

such as financial transactions and personal information. To address this problem, 

researchers are developing new quantum-resistant encryption methods that are not 

vulnerable to quantum computer attacks. The newly developed techniques, such as 

network-based encryption and code-based cryptography, have been specifically 

intended to provide strong security against potential assaults from both 

conventional and quantum computers. The Shor algorithm, also known as the Shor-2 

algorithm, is a fast integer factorization algorithm. It was developed by 

mathematician and computer scientist Daniel Shor in 1981 and improved the 

original Shor algorithm. It is based on the quadratic stack algorithm and uses the 

same basic ideas. It works by finding a set of smooth numbers that can be used to 

construct a unity between two quadratic residuals. This congruence can then be 

used to factor the original integer. Shor's algorithm is particularly efficient for 

factoring integers with small factors and has been used to factor several RSA 

challenge numbers. However, it is not as widely used as other factorization 
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algorithms, such as the general number field stack (GNFS), currently the fastest 

known algorithm for factoring large integers. Overall, Shor's algorithm represents a 

significant contribution to integer factorization and helped pave the way for further 

developments in this area of research. 

The problem we are trying to solve is, given an odd composite number N, to 

factor N. Shor's algorithm consists of two parts: 

• The factorization problem may be reduced to the order-finding problem 

using classical methods. 

• An algorithm utilizing quantum computing to solve the order search issue. 

The reduction in Shor's factorization algorithm is analogous to other 

factorization algorithms, such as the quadratic stack. 

3.1 Classical Procedure 

1. Take a pseudo-random number a < N. 

2. Calculate GCD (a, N). This can be done using Euclid's algorithm. 

3. If GCD (a, N) ≠ 1, then it is a factor of N, which provides a solution to 

the problem. 

4. Otherwise, use the period search subroutine (below) to find r, the period 

of the function, that is, the smallest r integer. 

5. If r is odd, go back to step 1. 

6. If ar / 2 ≡ -1 (mod N ), return to step 1. 

7. The N factors are GCD (ar / 2 ± 1. N), which solves the problem. 

3.2 The quantum part: the periodic probe subroutine 

This subroutine consists of the following steps: 

1. Start with the input and output registers of each log 2N qubits and 

initialize them to where x goes from 0 to N – 1, where x goes from 0 to N-1 

𝑁−
1
2  |𝑥 

𝑥

|0  

        (2) 

2. Construct f(x) as a quantum function and apply it to the previous state  

to obtain 

𝑁−
1
2  |𝑥 

𝑥

|𝑓(𝑥)  

       (3) 
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3. Apply the quantum Fourier transform to the input register. The quantum 

Fourier transform on N points is defined by: 

𝑈𝐹𝑄𝑇 |𝑥 =  𝑁−
1
2  𝑒

2𝜋𝑖𝑥𝑦
𝑁

𝑦

|𝑦  

     (4) 

Which provides the following state: 

𝑁−1   𝑒
2𝜋𝑖𝑥𝑦

𝑁

𝑦

|𝑦 |𝑓(𝑥) 

𝑥

 

     (5) 

4. Take a measurement. This gives a specific value, y, in the input and output 

registers. Since f is periodic, the probability of measuring a given y is given by  

 𝑁−1  𝑒
2𝜋𝑖𝑥𝑦

𝑁

𝑥:𝑓 𝑥 =𝑓 𝑥0 

 

2

=  𝑁−1  𝑒
2𝜋𝑖 𝑥0+𝑟𝑏 𝑦

𝑁

𝑏

 

2

 

  (6) 

5. The calculation shows that this probability is higher when yr / N is close 

to an integer. 

6. Check that f(x) = f(x + r'). If so, it's over. 

7. Otherwise, get more candidates for r using close values of y or multiples 

of r′. If another candidate goes, it's over. 

8. Otherwise, return to step 1 of the routine. 

4. Quantum cryptography based on elliptic curves 

Quantum elliptic curve cryptography (QECC) is a kind of public key 

cryptography that relies on the mathematical features of elliptic curves. Quantum 

Error Correction Codes (QECC) are extensively employed in contemporary 

cryptography to ensure the security of Internet communications, including the 

establishment of secure connections between websites and users. Elliptic curve 

cryptography (ECC) is a cryptographic technique that utilizes the features of 

elliptic curves for public key encryption. ECC uses the difficulty of solving some 

mathematical issues to encrypt and decrypt data. Like RSA, ECC is vulnerable to 

quantum computer attacks. Quantum computers can solve math problems used in 

ECC much faster than classical computers. This means that the development of 

quantum computers threatens the security of ECC. To solve this problem, 

researchers are developing new quantum-resistant cryptography methods that are 

not vulnerable to quantum computer attacks. One approach is to use isogeny-based 

cryptography, which is a form of cryptography based on the properties of elliptic 

curves but is resistant to quantum computer attacks. Isogeny-based encryption 

utilizes the mathematical features of isogenies, which are mappings across elliptic 
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curves that maintain certain algebraic properties. Isogeny-based encryption is 

specifically developed to provide security against both conventional and quantum 

computing threats. Quantum elliptic curve cryptography (QECC) is a kind of 

public key cryptography that is susceptible to exploitation by quantum computers. 

Current investigations in quantum-resistant cryptography strive to create novel 

techniques, such as isogeny-based encryption, that will effectively withstand 

assaults from both classical and quantum computers. 

The shift to quantum cryptography poses both an opportunity and a difficulty 

for contemporary computer science students. Several considerations are relevant 

from their viewpoint: 

• Students will be excited about the shift to quantum cryptography, being 

seen as a huge evolution, such as the transition from mechanical to 

digital systems; 

• Concepts like qubits, superpositions, and entanglement are hard to 

understand by the students, if they are using the classical concepts. 

• Companies such as IBM and Google invest in quantum technologies, 

this being an important argument for the students in the frame of 

quantum technologies learning. 

5. Conclusions 

The present manuscript represents an educational approach to quantum 

computing and encryption processes, where the students have the opportunity to 

understand the concepts, along with dedicated descriptions. The theoretical 

approach is combined with hands-on examples, making them suitable for the 

educational process. Students have the possibility to make connections between the 

classical approach and the quantum approach. Also, by inserting original print 

screens of the used software for the encryption process, the students have the 

chance to learn step-by-step instructions for individual learning. Further works will 

include more complex encryption methods where the students can observe in real 

time how the qubit is used during the computational process.   
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