

 https://doi.org/10.58503/icvl-v20y202535

Recurring learning activity planning model

Ion Alexandru POPESCU

Pitesti University Center, University of Science and Technology Politehnica Bucharest,

Bucharest, Romania

alexionpopescu@gmail.com

Abstract: The paper proposes a model for recurrent planning of learning activities from
an academic course or school lessons. This model can be adapted for other types of
learning activities. Databases and text/pdf files were used to store the information used.

The model uses two main components, one for configuring learning activities: calendar
dates, time of occurrence, online connection links, necessary auxiliary materials and a
second component for generating the interface of a particular learning activity: course,
laboratory, seminar, lesson. Modern web programming technologies were used to

implement this model.

Keywords: learning, webpage, modelling, database, interface.

1. Introduction

Nowadays, teachers prepare their courses in detail to make their teaching

work easier and to facilitate easier and more assisted learning for students. Thus, in

the academic environment, the teacher and students must have the working and
presentation materials at hand – in a format that is as predictable and attractive as

possible. This activity is presented in (Early Education Nation, 2024) and
(Homeschool Solutions, 2024). The schedule of learning activities is repetitive

week after week and for this reason recurrent planning is a mechanism often used

by teachers. At the beginning of the course period, the teacher prepares his/her
activities and teaching materials and may have his/her own style of planning,

different from those proposed by existing e-learning platforms such as MOODLE

or GOOGLE CLASSROOM, aspects presented in (Hamidi et al., 2011) and
(Popescu et al., 2020). Also, similar approaches for scheduling are presented in

(Bradley, 2021) and (Seman et al., 2018) or testing in (Popescu et al., 2016) and

(Popescu et al., 2023).

The model that we will present in this paper uses databases to store

information and web pages for the learning activity interfaces. For entering data

into databases, secure connection, setting activity data, generating connection links

for communication and creating work interfaces we will use scripts – in this way

the model can be implemented through an easy-to-manage web application.

The paper is fragmented into sections for a modular and fluent presentation,

to quickly understand the ideas of the model and the implementation method. In the

420 Proceedings of the International Conference on Virtual Learning

final part of the paper, the features of the model and what activities can be

integrated to extend the model and make it more efficient are presented.

2. Model presentation

The recurring learning activity planning model has two main components:

• ReConfig (Recurring configurator),

• UIGen (User Interface Generator)

ReConfig takes the course-related data from the professor and enters it into a

database. Among the data taken from the professor are the day and time of the

week in which the learning activity will take place, the materials (files, images,

presentations, etc.) usable in all courses.

UIGen generates recurring activities for all weeks between certain time

limits taken from the professor along with other restrictions. Also in this

component, the materials specific to each week of the course (online connection

links, files specific to certain courses, specific topics, etc.) are entered, as well as

configurations of the interface specific to each week, if applicable.

Figure 1 shows the diagram of the recurring planning model that contains the

two components presented previously.

Figure 1. Recurring Learning Activity Planning Model

For access to the ReConfig and UIGen components, access is only for the

professor, and for students, access is verified using the Verify component. Students

only have access to the course interface which is generated recurrently by UIGen

User

Student Verif

Standard

Interface

Course

Interface

User

Professor

Files
ReConfig

UIGen

Data

Base

Recurring learning activity planning model 421

using a Standard Interface and populated with course-specific data. The Standard

Interface comprises the presentation of the scheduled activities to all users (e.g.,

teachers, students) and it is generated based on the database information.

The model presented in the previous paragraphs can be mathematically

modelled based on a set of activities that have specific characteristics and must be

programmed in a defined time interval. Let there be a set of learning activities:

Each activity ai is characterized by:

- predefined scheduling (Si):

where di,j is the day scheduled for the activity ai for the jth repetition, ti,j is the

starting hour and li,j is the duration of the activity;

- recurrence frequency fi ∈ N is a number of time interval (e.g, an activity

ai is repeating after 1 week, thus fi = 1);

- files and resources

.

A scheduling interval T is set for the activities, T = [TS, TE], where TS is

the start time and TE is the end time for the period desired to generate the activities.

In this matter, each activity ai with (di,j,ti,j,li,j) ∈ Si must respect the condition:

For each activity ai with (di,j,ti,j,li,j) ∈ Si, with k reccurences, each recurring

instance is determined by the frequency fi :

To ensure that activities do not overlap on the same day, it is necessary to:

This constraint guarantees that, for any two activities scheduled on the same

day, the time slots do not overlap.

This mathematical model provides a clear structure for planning recurring

activities, integrating the elements of predefined schedules, frequency, resources,

and scheduling period. It serves as a theoretical basis for developing an application

to automatically manage schedules and resources needed in the educational

environment.

The current implementation may serve as a base for developing a generator

of a schedule of recurring activities where the activities have not a fixed date and

422 Proceedings of the International Conference on Virtual Learning

time of progress. In this matter, the model would take into account a list of activities,

their duration, the frequency and the start and end time interval in weeks (e.g., Week

1, Week 2 etc.). Thus, the problem of the schedule generation transforms into an

optimisational one, taking into account a minimum number of overlapping

activities that form a list. The model would comprise the next elements:

- the start (TS) and end (TE) times of a time interval desired for the

scheduling problem, stated as weeks (e.g., Week 1 with TS = 1, Week 14

with TE = 14);

- the list of activities:

- the fixed duration of an activity li ∈ R+;

- the frequency of the activity fi ∈ N, a number of time interval (e.g, an

activity ai is repeating after 1 week, thus fi = 1);

- the number of instances of the activity ni, computed as the report

between the difference between TS and TE and the frequency of the

activity fi;

- the hourly starting point in time of each activity Hi;

- the day of week of each activity Di ∈ {1, 2, …7}, representing the

weekdays.

Then, for each week Sj, j ∈ {TS, …, TE}, the total number of overlapping is

computed:

Then, using a Greedy strategy, the week with the most overlaps (maximum

of C(Sk)) is selected. For this week, an optimisational algorithm may be used. For

example, for a genetic algorithm, a chromosome is presented as the list of activities

in the week k:

The objective function would follow the minimisation of the overlapping of

the activities represented as triplets in the week k, which would be the minimisation

of the function C(Sk). Then, a genetic algorithm would be applied in order to

minimise the value of the function C.

The implementation of this model optimizes activity scheduling by reducing

overlaps and accelerating computation, as the genetic algorithm only acts on the

most problematic week. Greedy selection prioritizes conflicts, and crossover and

Recurring learning activity planning model 423

mutation allow for rapid adjustments. The model is scalable, flexible, and easy to

extend with additional constraints, such as room or teacher allocation.

Overall, extending the initial model with a genetic algorithm allows for

optimizing the distribution of scheduled activities, reducing overlaps and

maximizing planning efficiency. The algorithm can adjust the allocation of

resources (rooms, teachers) and balance the timetable load, avoiding inefficient

scheduling.

3. Implementation

The recurrent learning activity planning model presented in the previous

section was implemented using the following web technologies:

• Laravel 11 (PHP) - was used to develop the backend component,

providing a scalable and robust base to manage the logic part of the

application, the interaction with the database, as well as ensuring secure

communication between the server and the client;

• Vue.js 3 - was used to develop the frontend component, providing a

flexible and reactive framework to create dynamic and user-friendly

interfaces. Its component-based structure ensures modularity of the user

interface but also easier maintainability;

• Mysql 8 - the relational database that was used to store the application

data. Due to its advanced functionalities, such as JSON support, but also

the improved indexes mechanisms, it allowed the creation of efficient

queries for scheduling activities.

Laravel 11 was mainly used for:

• providing API endpoints for the frontend

• interacting with the database to store and retrieve information efficiently

• managing activities by implementing their storage logic

Vue.js was mainly used for:

• designing an interactive interface for users, where they can create, edit,

and view recurring learning activities

• implementing real-time validations of activities

• using Vuex for state management to ensure a seamless experience

Figure 2 shows the interface for the activities calendar. As we can see in the

calendar, on a given day, the group of students who are going to have the lesson at

the mentioned start time is marked. We have several colors present, these

represent:

424 Proceedings of the International Conference on Virtual Learning

• green for a lesson that will take place online

• gray for a lesson that will take place physically (offline)

• red-gray represents a lesson that has been canceled (for example, for the

image, 3 lessons were scheduled for that group but the one on January

3rd could not be held, so it is marked as canceled).

In Figure 2 we have the weekly version of the calendar where we can see in

more detail how long each lesson lasts (the block associated with the lesson

stretching over the duration range).

Figure 2. Recurring Learning Activities Calendar (monthly view)

To achieve these things in the interface, the Fullcalendar component from

Vue.js was used.

Figure 3 shows the interface for the form for adding an activity. The fields in

the form represent:

• group - the group for which the activity is planned

• day of the week - the day of the week it will take place (1 for Monday, 2

for Tuesday, etc.)

• start and end time - the interval in which it will take place

Recurring learning activity planning model 425

• start date - the date it will start

• occurrences - the number of weeks in which it will take place (for

example 4 to have each week for a month), and the end date (end date)

will be automatically filled in based on the chosen value

• online lesson - a simple checkbox to determine whether the activity is

online or not

Figure 3. Recurring Learning Activities Calendar (weekly view)

Once completed, the form in figure 4 is first checked by the interface (the

end time should not be before the start time as well as other validations), then this

data is sent to the backend via a request. Once they arrive here, they are checked

again much more strictly (there are validations to avoid overlapping activities, for

example), and then if everything is considered in order, they are stored in the

database.

426 Proceedings of the International Conference on Virtual Learning

Figure 4. Recurring Learning Activities Calendar (activity add form)

4. Conclusions and future work

The Recurring Learning Activity Planning model contains the mechanisms

necessary to plan a series of activities using various information resources in a

simple and intuitive presentation. This model can be integrated into e-learning tools

and platforms at the institutional level, allowing the use of specific configurations.

In the coming period, we want to use the model in a complex teaching - learning -

assessment application, such as those presented the mentioned research papers, and

to develop it to show its efficiency. At the same time, recurring tasks and

assignments for students can be planned or testing methods can be used, like in

those specified in the mentioned similar works. Also, the implementation of an

additional feature of an alternative scheduling configuration using genetic

Recurring learning activity planning model 427

algorithm may lead to improvements. Extending the original model with a genetic

algorithm allows for the optimization of activity scheduling, modifying hours and

days to minimize overlaps and create a more balanced schedule. By applying

selection, mutation, and crossover, the algorithm can find more efficient

distributions of activities, respecting the imposed constraints and maximizing the

use of available time.

REFERENCES

Bradley, V. M. (2021) Learning management system (lms) use with online

instruction. International Journal of Technology in Education. 4 (1), 68–92.

Early Education Nation (2024) How to Plan a Lesson or Activity - Activity Planner,

https://support.lillio.com/s/article/director-Creating-a-lesson-on-the-Activity-

Planner [Accessed 2th January 2025].

Hamidi, F., Meshkat, M., Rezaee, M., Jafari, M. (2011) Information Technology in

Education. Procedia Computer Science. 3, 369-373. doi:

10.1016/j.procs.2010.12.062

Homeschool Solutions (2024) Creating a Lesson Plan with Repeating Pattern,

http://help.homeschooltracker.com/LP_Intervals.aspx, [Accessed 2th January 2025]

Popescu, D. A., Bold, N., Nijloveanu, D. (2016) A Method Based on Genetic

Algorithms for Generating Assessment Tests Used for Learning. Journal Polibits.

54, 53-60. doi: 10.17562/PB-54-7

Popescu, D. A., Cristea, D. M., Bold, N. (2023) A Transfer Learning Approach

Interaction in an Academic Consortium, 22nd ICWL 2023: Sydney, NSW, Australia.

pp. 204-219.

Popescu, D. A., Tița, V. & Bold, N. (2020) Model of online course activities

management. 9-th International Workshop on Soft Computing Applications (SOFA).

pp. 153-158.

Seman, L. O., Hausmann, R., Bezerra, E. A. (2018) On the students’ perceptions of

the knowledge formation when submitted to a project-based learning environment

using web applications. Computers Education. 117, 16–30. doi:

10.1016/j.compedu.2017.10.0

https://doi.org/10.17562/PB-54-7

	Blank Page

