

 https://doi.org/10.58503/icvl-v20y202530

Flipping the grade: Empowering students through

self-assessment in informatics

Maria GUTU

Technical University of Moldova, Chisinau, Moldova

maria.gutu.md@gmail.com

Abstract: This paper illustrates how self-assessment and self-grading in Informatics

education transform traditional grading into an active learning process. By shifting the

focus from teacher-driven evaluation to student-led reflection, self-grading fosters

autonomy, metacognition, and problem-solving skills. The paper shows how structured

approaches – such as rubric-based self-grading, peer-reviewed assessment, and digital

portfolios – enhance students' ability to critically evaluate their work and develop

computational thinking. However, challenges such as grading reliability, student bias, and

the need for structured guidance must be addressed. The paper highlights strategies to

mitigate these issues, including standardized rubrics, justification mechanisms, and

moderation through peer and teacher reviews. It demonstrates how balancing student

autonomy with oversight ensures fairness and deepens engagement. By embedding self-

regulation into assessment, the “Flipping the Grade” model shifts grading from a static

measure to an iterative learning process. This paper presents self-grading as a powerful

tool in competency-based Informatics education, fostering independence, accountability,

and lifelong learning skills.

Keywords: Self-assessment, Self-grading, Assessment criteria, Informatics, Active

learning.

1. Introduction

Assessment has traditionally been a teacher-controlled process, where

students receive grades based on external evaluations rather than their

understanding of their learning progress. However, there is a growing shift towards

student-driven self-assessment in modern education (McMillan & Hearn, 2008;

Yan, Chiu & Ko, 2020; Gutu, 2022a; Wong & Taras, 2022; Gutu, 2023b), where

learners actively evaluate and grade their work (Andrade, 2008; Weiss, 2018;

Carroll, 2020; Panadero et al., 2023). This shift is particularly relevant in

Informatics education, where problem-solving, debugging, and optimising code

require continuous self-reflection and iterative improvement.

Implementing structured self-assessment models helps students develop

critical thinking, self-regulation, and a deeper understanding of Informatics

362 Proceedings of the International Conference on Virtual Learning

concepts. This paper explores various models for integrating self-assessment and

self-grading into Informatics education, including rubric-based evaluation, peer-

reviewed self-grading, and digital portfolios. The focus is on how teachers can

implement these models effectively, ensuring that students assess their work

accurately and engage in meaningful self-reflection to enhance their programming

skills.

2. Theoretical framework

“Flipping the Grade” is an innovative approach that transforms assessment

from a teacher-centred practice into a student-led process. Instead of relying solely

on teacher-assigned grades, students are provided explicitly stated assessment

criteria and scoring indicator rubrics to evaluate their work, reflect on their

learning, and assign themselves a grade based on their performance. This approach

aligns with competency-based education, which emphasises the attainment of skill

mastery rather than reliance on rote memorisation. Additionally, it aligns with the

flipped learning model (Gutu, 2023a), which fosters student autonomy by

encouraging learners to take an active role in their educational development.

The foundation of “Flipping the Grade” lies in constructivist learning

theories, which emphasise the role of learners as active participants in their

education. Constructivism posits that knowledge is actively constructed rather than

passively received, meaning that students learn best when reflecting, self-

regulation, and problem-solving. In Informatics education (Caspersen et al., 2022;

Gutu, 2022b, 2023a), where students work with complex problem-solving tasks,

algorithms, and debugging, critically evaluating one's work is crucial for

developing computational thinking skills.

Metacognition, closely linked to constructivism, refers to the ability to

reflect on one's thinking and learning processes. When students are engaged in self-

assessment and self-grading, they actively practice metacognitive regulation

(Giraldo & Herold, 2023; Nechyporuk & Romaniuk, 2024), a crucial component of

independent learning. In Informatics education, particularly in programming,

learning extends beyond the correct execution of syntax; it requires strategic

problem-solving, logical reasoning, and continuous self-monitoring. According to

Gutu (2022a, 2023a), students cultivate self-regulated learning skills through

structured self-assessment, enabling them to plan their approach to programming

tasks, monitor their progress, and assess their outcomes. These competencies are

not only fundamental for academic achievement but also essential for long-term

adaptability (Westover, 2024) and professional growth in technological fields

(Verano-Tacoronte, Bolívar-Cruz & González-Betancor, 2015).

Moreover, self-grading within the flipped learning paradigm further

amplifies student engagement and autonomy. In a flipped classroom model (Gutu,

2023a; Xia, 2023; Deng, Feng & Shen, 2024), theoretical instruction is delivered

outside the classroom through digital resources, allowing in-class time devoted to

Flipping the grade: Empowering students through self-assessment in informatics 363

active problem-solving and applied learning. Extending this model to the grading

process reinforces students' responsibility for their learning by requiring them to

critically assess their work, identify areas for improvement, and assign themselves

a grade based on provided assessment criteria (Stevens & Levi, 2005; Gutu,

2022a). This approach aligns with competency-based education, prioritising

mastery of skills over accumulating grades. By self-grading, students transition

from a fixed mindset, where assessment is seen as an endpoint, to a growth-

oriented perspective, wherein evaluation is viewed as an iterative improvement

process. Rather than perceiving grades as static indicators of ability, students

develop a reflective mindset emphasising continual skill refinement.

According to Gutu (Gutu, 2022a), the effectiveness of self-assessment and

self-grading in Informatics education is contingent upon providing clear and

structured assessment criteria. The absence of explicit grading guidelines may

result in inaccurate self-evaluation (Dixon et al., 2020), either due to

overestimating one’s abilities or an undue lack of confidence in one’s work.

Teachers must employ structured rubrics that define specific evaluation parameters

(Andrade, 2008; Muhammad, Lebar & Mokshein, 2018), including code

correctness, efficiency, readability, debugging methodologies, and problem-solving

approaches to mitigate such inconsistencies. These rubrics serve as objective

benchmarks, ensuring student evaluations align with established learning

objectives and maintaining consistency across self-assessments.

In addition to rubrics, guided reflection prompts enhance the depth of self-

assessment by prompting students to justify their evaluations. Reflection questions

(e.g., “What were the primary challenges I encountered while coding?” “How does

my solution compare to alternative approaches in terms of efficiency?” and “What

modifications could improve my implementation?”) encourage higher-order

cognitive engagement.

By shifting the responsibility of assessment from teachers to students, the

“Flipping the Grade” model fosters a learning culture centred on accountability,

self-regulation, and lifelong learning. In Informatics education, continuous learning

and adaptability are essential for success (Caspersen et al., 2022); this approach

enhances students’ technical competencies and cultivates critical thinking and self-

directed learning behaviours. When implemented effectively, self-grading

transforms traditional assessment into a dynamic and reflective learning process,

equipping students with the skills necessary for both academic and professional

excellence in computational fields.

3. Models of implementation for “Flipping the Grade” in informatics

3.1 Self-grading rubrics with assessment criteria and scoring indicators

Implementing self-assessment and self-grading in Informatics requires
structured approaches that ensure both objectivity and student engagement. One of
the most effective methods for guiding students in this process is the use of detailed

364 Proceedings of the International Conference on Virtual Learning

grading rubrics. As outlined by Stevens and Levi (2005), Brookhart (2013),
Dawson (2017), and Muhammad, Lebar, and Mokshein (2018), rubrics are
designed with distinct elements tailored to specific aspects of assessment, such as
task-specific criteria, task descriptions, and analytic cumulative scoring. These
elements aim to clarify the task, identify the level of mastery, and guide students
through new concepts.

In this context, the self-grading rubric developed in this study provides
students with explicit assessment criteria and scoring indicators, enabling them to
evaluate their work effectively. This structured approach ensures that students
comprehend key aspects of quality programming, including code correctness,
readability, and debugging strategies. Furthermore, the assessment criteria facilitate
critical analysis of students’ coding practices and other Informatics-related
activities, thereby fostering self-regulation (Andrade & Brookhart, 2016; Gutu,
2022a) and enhancing independent problem-solving skills.

The process of self-grading begins with the teacher designing a
comprehensive description rubric that clearly defines the parameters for
assessment. This rubric typically includes multiple dimensions of evaluation, such
as functionality (whether the code produces the expected output), efficiency (how
well the algorithm optimises computational resources), readability (the clarity and
organisation of the code), and debugging (the student’s ability to identify and
correct errors). Before engaging in self-assessment, students receive explicit
instruction on using the rubric, often through guided examples where they practice
grading sample code snippets. This preparatory step ensures consistency and
accuracy in the self-assessment process.

Once students have completed their programming tasks, they apply the
rubric with descriptions to their work, carefully assessing each criterion. This
process encourages them to critically reflect on their problem-solving approach,
identifying strengths and areas for improvement (Andrade & Brookhart, 2016;
Dawson, 2017; Muhammad, Lebar & Mokshein, 2018; Gutu, 2023b). To enhance
accountability, students are required to justify their self-assigned grades through
written explanations or brief verbal reflections. This justification process reinforces
metacognitive skills and minimises the risk of inflated or inaccurate self-grading.
By articulating the reasoning behind their evaluations, students become more
conscious of the quality of their work and develop a deeper understanding of
Informatics concepts.

Furthermore, students are encouraged not to refer to the assessment criteria
before completing the task. They should only consult these criteria if they do not
fully understand the task requirements. In this regard, within the same classroom,
the same criteria can serve different purposes: either as a guide for task completion
or as a tool for assessing the level of mastery. This approach fosters student
engagement and promotes independent task execution.

An example of this implementation in an Informatics classroom involves a

programming task focused on loop structures in C++. Students are assigned a task

Flipping the grade: Empowering students through self-assessment in informatics 365

that requires them to write a program utilising loops to perform a computational

task (Table 1).

Table 1. Example of a problem statement

The Bunker Access Code Puzzle

A secret bunker conceals essential information in a deserted city of ruins and mysteries. To

uncover the events in this city, a group of explorers has decided to enter the bunker and investigate

its contents. Access to the bunker is restricted by a unique numerical code, which can only be

deciphered by solving a mathematical puzzle left behind by the engineers of the previous

civilisation. Engraved on the massive surface of the bunker door are n numbered panels, each

containing a distinct number. These numbers serve as the key to decrypting the bunker’s access

code.

Puzzle Rules:

• Examine each panel and read the inscribed number.

• Determine whether the given number is prime.

• Sum all the prime numbers identified on the n panels to obtain the final sum.

• The sum of the identified prime numbers represents the bunker’s access code.

Input Data:

• A natural number n, indicates the total number of panels.

• n distinct natural values, each representing a number engraved on a panel.

Output Data:

• A natural number represents the sum of the prime numbers on the panels, constituting the

bunker’s access code.

Constraints and Specifications:

• 1 ≤ n ≤ 100

• 2 ≤ engraved value on a panel ≤ 1000000

After writing and debugging their code, students assess their performance

using the assessment rubrics (Table 2). They evaluate whether their loops execute

correctly, whether their algorithm is optimised for efficiency, their understanding

of the problem statement, the correctness of summing prime numbers, the

implementation of an optimised prime-checking function, input handling and

adherence to constraints, and whether their code follows best practices for

readability and clarity. They are encouraged to revise their work before finalising

their self-assessment if they encounter errors. In addition to assigning a numerical

grade, students provide a short reflection explaining how they arrived at their score,

detailing any challenges they faced and the strategies they used to overcome them.

Table 2. Provided assessment criteria for the bunker access code solution

1. Criteria: Input Handling and Adherence to Constraints

Excellent (20 pts) Correctly processes all constraints, including boundary values (e.g.,

𝑛=1, 𝑛=100, 2 ≤ engraved value on a panel ≤ 1000000). Fully

adheres to input rules and uniqueness conditions.

Good (15 pts) Handles most edge cases but overlooks one or two. Minor constraint

issues (e.g., fails to enforce distinct values or mishandles n=99).

Satisfactory (10 pts) Manages some edge cases but fails in extreme cases. Partial

constraint adherence (e.g., incorrect range handling).

Needs improvement

(5 pts)

Fails to manage boundary conditions, leading to errors. Do not

enforce constraints, resulting in incorrect outputs.

366 Proceedings of the International Conference on Virtual Learning

2. Criteria: Prime number identification

Excellent (20 pts) Implements an optimised prime-checking function with O(n) time

complexity.

Good (15 pts) Correctly identifies primes but with minor inefficiencies (e.g.,

unnecessary divisibility checks, no separate function).

Satisfactory (10 pts) Partially correct implementation; some incorrect results for certain

numbers (e.g., incorrectly classifies one or other numbers as prime).

Needs improvement

(5 pts)

Incorrect prime-checking logic, leading to significant errors (e.g.,

missing actual primes or misidentifying composites).

3. Criteria: Summing prime numbers

Excellent (20 pts) Correctly sums only prime numbers as required and ensures accuracy.

Good (15 pts) Works correctly but lacks efficiency (e.g., unnecessary checks or

redundant calculations).

Satisfactory (10 pts) Some errors in summation (e.g., including non-primes or missing

primes in the sum).

Needs improvement

(5 pts)

Incorrect or missing logic summation leads to completely wrong

results.

4. Criteria: Time complexity & Memory efficiency

Excellent (20 pts) Implements prime checking with O(n) complexity. Uses minimal

and necessary memory without redundancy.

Good (15 pts) Efficient but with minor optimizations missing (e.g., redundant

calculations, extra loop iterations). Slightly higher memory use but

no major inefficiencies.

Satisfactory (10 pts) Uses a less optimal approach (e.g., checks divisibility up to 𝑛 instead

of n). Unnecessary memory usage (e.g., storing extra data instead

of direct processing).

Needs improvement

(5 pts)

Highly inefficient (e.g., nested loops, brute force checking).

Excessive memory usage due to redundant storage or poor

management.

5. Criteria: Code clarity and readability

Excellent (10 pts) Well-structured, properly indented, and includes meaningful variable

names and inline comments explaining key sections.

Good (8 pts) Mostly clear, with minor readability issues (e.g., inconsistent

spacing or some unclear variable names). Includes some comments.

Satisfactory (5 pts) Somewhat readable but lacks consistent formatting. Does not

include comments.

Needs improvement

(2 pts)

Poorly structured, making it difficult to follow. No comments,

making it hard to understand the logic.

6. Criteria: Understanding of the problem statement

Excellent (10 pts) Clearly understands the problem and implements all requirements

correctly, including constraints and conditions.

Good (8 pts) Demonstrates good understanding but misses minor details (e.g.,

slight deviations in expected input/output format).

Satisfactory (5 pts) Basic understanding, but some requirements are incomplete or

misinterpreted (e.g., incorrect assumption about the number range).

Needs improvement

(2 pts)

Major misunderstanding of the problem, an incorrect or incomplete

implementation that does not align with the given statement.

Total Score: /100 Points

90 - 100: Outstanding implementation with correct logic, efficiency, and clarity.

75 - 89: Good implementation with minor efficiency or edge case handling issues.

50 - 74: Satisfactory but with noticeable logic, efficiency, or constraints errors.

Below 50: Needs significant improvements in correctness, efficiency, and understanding.

Flipping the grade: Empowering students through self-assessment in informatics 367

The assessment criteria in rubrics can be presented more explicitly by

incorporating concrete aspects of code development, using specific code sequences

to support students' understanding. This approach is particularly useful when

introducing students to a new topic or concept. Alternatively, the criteria can be

presented in a less detailed manner, as shown in Table 2, to encourage a more

critical self-evaluation process. This type of approach requires a final collective

analysis to ensure that all students have correctly applied and assessed their work

using these criteria.

The selection of approach depends on the desired level of competency

mastery in student development. When the criteria are used frequently, aspects

related to Code Clarity and Readability, Time Complexity & Memory Efficiency,

Input Handling, and Adherence to Constraints tend to be implicitly considered by

students, thereby streamlining the self-evaluation process and reducing the time

required for assessment.

To enhance the efficiency of the assessment process, these evaluation rubrics

can be implemented online using platforms such as Google Forms, Microsoft

Forms, Moodle, or any other system that enables automated score calculation.

Additionally, these platforms allow students to review their selected responses for

further reflection and reevaluation. Consequently, the option to complete the

rubrics multiple times could be enabled to foster continuous learning and

improvement.

Therefore, this model fosters a greater sense of responsibility and

engagement among students. Rather than viewing assessment as an external

judgment imposed by the teacher, students take ownership of their learning

process, recognising assessment as a personal and academic growth tool.

Furthermore, this approach aligns with competency-based education by

emphasising skill mastery over task completion. Students develop an iterative

mindset by repeatedly engaging in self-assessment, refining their problem-solving

techniques and enhancing their programming abilities.

3.2 Peer-reviewed self-grading model

The peer-reviewed self-grading model is a structured approach that

integrates collaborative assessment with self-reflection, fostering a deeper

engagement with learning while promoting accuracy in self-assessment. Unlike

traditional grading, where the teacher solely determines evaluation, this model

introduces a two-step verification process: peer feedback (Topping, 2018; Gutu,

2022a) and self-grading based on structured reflection. This process strengthens

students’ ability to analyse their work critically and that of their peers, encouraging

constructive dialogue, iterative improvement, and metacognitive awareness in

Informatics education (Gutu, 2023a, 2023b).

The implementation of this model begins with students exchanging their

programs before assigning themselves a grade. The exchange ensures that each

368 Proceedings of the International Conference on Virtual Learning

student evaluates a peer’s work using teacher-provided assessment criteria. This

stage encourages students to apply their analytical skills to a peer’s program,

providing structured feedback highlighting strengths and improvement areas. Peer

feedback is a formative checkpoint (Kumar, Kenney & Buraphadeja, 2013;

Simonsmeier et al., 2020), offering an external perspective that may uncover

unnoticed errors or suggest optimisations that enhance code efficiency.

Furthermore, peer assessment develops communication and critique skills (Double,

McGrane & Hopfenbeck, 2020), which are essential for collaborative problem-

solving in Informatics.

Following peer feedback, students return to their programs, reviewing the

suggestions received before conducting their self-assessment. This reflection phase

allows students to revise their code, address logical errors, improve structure, or

optimise functionality. Once revisions are complete, students proceed with self-

grading, assigning themselves a score based on the same rubric used for peer

evaluation. This step requires them to justify their grade, explaining how their

program aligns with the provided criteria and what changes were made based on

peer feedback. The requirement for justification reinforces accountability and self-

regulation, ensuring that students engage deeply with the assessment process rather

than arbitrarily assigning grades.

An example of this model in practice can be illustrated through a sorting

algorithm task. A student initially submits an implementation of bubble sort and

exchanges it with a peer. The peer identifies that while the algorithm produces

correct output, its efficiency could be improved by reducing unnecessary iterations.

They provide this feedback, suggesting the optimised version with an early

termination condition. Upon receiving the input, the students revisit their code,

incorporate the proposed improvement, and re-evaluate their work. They then

assign themselves a grade, justifying their decision by explaining how the peer

feedback led to a more efficient implementation.

This iterative process of peer review, revision, and self-grading enhances

students’ ability to critically engage with their work while developing a more

accurate understanding of evaluation criteria. It also reduces grading bias, as self-

assessment is informed by both external feedback and assessment criteria

reflection. By shifting the grading process from a teacher-centric activity to

collaborative and self-directed practice, this model empowers students to take

ownership of their learning and fosters a culture of continuous improvement in

Informatics education.

3.3 Digital portfolios with self-grading reflections

In the context of Flipping the Grade, digital portfolios serve as an effective

tool for fostering self-assessment, metacognition, and long-term learning reflection

(Yancey, Cambridge & Cambridge, 2023) in Informatics education. Unlike

traditional grading methods, which offer students only a final score with limited

Flipping the grade: Empowering students through self-assessment in informatics 369

feedback, digital portfolios provide a structured way to document their coding

progress, evaluate their work, and justify their grading decisions over time. This

process enhances student autonomy and encourages continuous improvement by

allowing learners to revisit their past work, identify patterns in their learning, and

develop a growth mindset.

To implement self-grading through digital portfolios, students maintain an

organised collection (Berbegal Vázquez et al., 2021) of their coding exercises,

challenges, and projects, each accompanied by a self-assessment reflection. The

structure of these portfolios typically includes three key components: the initial

problem statement or task, the student’s solution (code and/or algorithm), and a

self-reflection entry where they analyse their performance based on predefined

grading criteria. The self-reflection component is crucial, as it requires students to

critically evaluate their strengths, weaknesses, debugging strategies, and overall

approach to problem-solving. Students engage in deeper cognitive processing by

assigning and justifying their grades, reinforcing their understanding of Informatics

concepts and programming logic.

In our educational practice, we utilize Moodle and Google Classroom for

managing digital portfolios, providing a structured framework for student reflection

and self-assessment. Within this process, teachers assume a facilitative role,

offering periodic feedback on students’ reflections rather than assigning direct

grades to their work. Comments provided on the platform focus on the accuracy of

self-assessment, the depth of reflection, and areas requiring improvement, rather

than merely validating or correcting student-assigned grades. The primary

objective is to support students in developing evaluative judgment, enabling them

to accurately assess their performance over time. In cases where there is a

significant discrepancy between a student's self-assigned grade and expected

performance standards, teachers intervene through guided questioning or structured

discussions rather than direct correction. This approach reinforces student

responsibility and autonomy in the learning process.

A practical example of this implementation can be seen in project-based

assessments, where students develop a mini-programming project aligned with

specific learning objectives. As part of their portfolio, students document their

development process, challenges encountered, and problem-solving approaches.

Upon completing the project, they use a rubric or checklist provided by the teacher

to assess their work, assigning themselves a grade based on parameters such as

functionality, efficiency, code readability, and debugging quality. In their

reflection, they justify their grade by addressing key questions: Did the program

meet the intended goals? What were the main challenges? How did I improve my

code? What would I do differently in a future iteration? This iterative process

promotes self-directed learning and continuous improvement, enabling students to

develop a more sophisticated understanding of programming principles.

370 Proceedings of the International Conference on Virtual Learning

The use of digital portfolios for self-grading has significant pedagogical
advantages (Berbegal Vázquez et al., 2021; Domene-Martos et al., 2021; Yancey,
Cambridge & Cambridge, 2023). First, it shifts the focus from external validation
to intrinsic motivation, as students become active participants in their assessment
rather than passive recipients of grades. Second, researchers highlight that the
digital portfolio provides a comprehensive record of student learning, allowing
both students and teachers to track progress, identify learning gaps, and make
informed instructional adjustments (Chang et al., 2018; Berbegal Vázquez et al.,
2021). Finally, this approach aligns with modern competency-based education
models, where assessment is not solely about correctness but also about the process
of learning, problem-solving, and self-regulation.

By integrating self-grading through digital portfolios, teachers can create a
more reflective and autonomous learning environment in Informatics. Students are
assessed not only on their final output but also on their ability to evaluate and
improve their work. This model ensures that grading is not an endpoint but an
ongoing learning process, preparing students to be self-reliant and critical thinkers
in their future academic and professional pursuits.

4. Challenges and considerations

The integration of self-grading in Informatics education offers significant
benefits in fostering autonomy, metacognitive skills, and critical thinking.
However, its implementation is accompanied by challenges that must be carefully
addressed to ensure fairness, accuracy, and pedagogical effectiveness. Key
concerns include grading reliability, balancing student autonomy with teacher
oversight, and providing structured guidance to facilitate accurate self-assessment.

A primary challenge in self-grading is the risk of inaccurate assessment due
to over- or underestimation of one’s abilities. Without clear evaluation criteria,
students may inflate or deflate their grades, leading to inconsistencies that
compromise the reliability of assessments. Establishing detailed, standardized
rubrics with explicit performance indicators mitigates this risk, enabling students to
align their evaluations with objective benchmarks rather than personal biases.
Additionally, incorporating justification mechanisms, such as reflective
explanations or comparative analysis with exemplars, enhances grading accuracy
by encouraging deeper metacognitive engagement.

Balancing student autonomy with teacher oversight is another critical
consideration. While self-grading promotes student ownership of learning, the
absence of teacher intervention may result in discrepancies or manipulation of
grades. A moderation system, where teachers review a subset of student-assigned
grades, ensures consistency while maintaining student agency. Furthermore, peer
assessment serves as an intermediary validation step, allowing students to refine
their self-assessment based on external feedback. A multi-layered approach –
integrating self, peer, and moderated teacher assessments – preserves fairness while
reinforcing evaluative skills.

Flipping the grade: Empowering students through self-assessment in informatics 371

Effective self-grading implementation necessitates explicit scaffolding

strategies. Self-assessment is a learned skill, requiring structured guidance and

modeling. Teachers should introduce self-evaluation techniques through

demonstrated grading exercises, allowing students to practice using rubrics with

sample work before applying them to their own assignments. Collaborative

discussions and peer comparisons further refine evaluative abilities by exposing

students to diverse perspectives on quality and performance standards. Iterative

self-assessment, wherein students engage in repeated grading cycles with feedback-

driven refinement, cultivates more reliable self-evaluation practices over time.

Ultimately, the success of self-grading in Informatics education depends on a

well-structured framework that addresses grading biases, ensures an appropriate

balance of autonomy and oversight, and fosters the development of self-assessment

competencies. By embedding reflective evaluation into learning processes, students

not only enhance their ability to critically assess their programming work but also

cultivate essential problem-solving and self-regulation skills necessary for

academic and professional growth. This structured approach positions self-grading

as a transformative tool in competency-based education, shifting assessment from a

static grading mechanism to an iterative learning process.

5. Conclusions

Implementing self-assessment and self-grading in Informatics education

carries significant pedagogical implications, particularly in transforming students’

perceptions of grading. Traditionally, students view grades as external judgments

imposed by teachers, often prioritizing high scores over the learning process itself.

By engaging in self-assessment, grading becomes an active, reflective learning

experience rather than a summative evaluation. This shift fosters deeper cognitive

engagement, requiring students to critically analyze their work, justify their

assessments, and identify areas for improvement. Rather than passively receiving

grades, they develop a growth-oriented mindset where feedback and self-reflection

become integral to their learning. In Informatics education, where problem-solving

and debugging demand iterative thinking, this approach strengthens students’

ability to independently evaluate their coding practices and enhance their

computational skills over time.

Beyond fostering a mindset shift, self-grading cultivates responsibility and

accountability by requiring students to apply structured assessment criteria to their

work. This process enhances self-regulation, an essential skill in programming and

software development. When students justify their self-assigned grades using

predefined rubrics, they engage in metacognitive evaluation, improving their

ability to detect errors, optimize solutions, and critically assess their problem-

solving approaches. Moreover, by assuming responsibility for their grading,

students become more invested in the quality of their work, leading to increased

motivation and engagement. This approach also reduces dependency on teacher

372 Proceedings of the International Conference on Virtual Learning

validation, fostering independence and self-confidence in their programming

abilities.

The “Flipping the Grade” approach redefines assessment practices in

Informatics education by encouraging a shift in student mindsets and reinforcing

self-regulation skills. By integrating self-assessment and self-grading, teachers can

cultivate a more autonomous, reflective, and engaged learning environment that

better prepares students for the demands of computational problem-solving and

lifelong learning.

REFERENCES

Andrade, H. (2008) Self-Assessment Through Rubrics. Educational Leadership. 65

(4), 60–63.

Andrade, H. & Brookhart, S.M. (2016) The Role of Classroom Assessment in

Supporting Self-Regulated Learning. In: D. Laveault & L. Allal (eds.). Assessment

for Learning: Meeting the Challenge of Implementation. The Enabling Power of

Assessment. Cham. Springer International Publishing. pp. 293–309. doi:

10.1007/978-3-319-39211-0_17.

Berbegal Vázquez, A., Merino Orozco, A., Arraiz Pérez, A. & Sabirón Sierra, F.

(2021) The e-portfolio in higher education: The case of a line of teaching

innovation and complex change management. Tuning Journal for Higher

Education. 9 (1), 29–64. doi: 10.18543/tjhe-9(1)-2021pp29-64.

Brookhart, S.M. (2013) How to Create and Use Rubrics for Formative Assessment

and Grading. ASCD member book. Alexandria, ASCD.

Carroll, D. (2020) Observations of student accuracy in criteria-based self-

assessment. Assessment & Evaluation in Higher Education. 45 (8), 1088–1105.

doi:10.1080/02602938.2020.1727411.

Caspersen, M.E., Diethelm, I., Gal-Ezer, J., McGettrick, A., Nardelli, E., Passey,

D., Rovan, B. & Webb, M. (2022) Informatics Reference Framework for School.

National Science Foundation. doi:10.1145/3592625.

Chang, C.-C., Liang, C., Chou, P.-N. & Liao, Y.-M. (2018) Using e-portfolio for

learning goal setting to facilitate self-regulated learning of high school students.

Behaviour & Information Technology. 37 (12), 1237–1251. doi:

10.1080/0144929X.2018.1496275.

Dawson, P. (2017) Assessment rubrics: towards clearer and more replicable design,

research and practice. Assessment & Evaluation in Higher Education. 42 (3), 347–

360. doi: 10.1080/02602938.2015.1111294.

Deng, R., Feng, S. & Shen, S. (2024) Improving the effectiveness of video-based

flipped classrooms with question-embedding. Education and Information

Technologies. 29 (10), 12677–12702. doi: 10.1007/s10639-023-12303-5.

Flipping the grade: Empowering students through self-assessment in informatics 373

Dixon, C., Dixon, P.E., Sultan, S., Mustafa, R., Morgan, R.L., Murad, M.H., Falck-

Ytter, Y. & Dahm, P. (2020) Guideline developers in the United States were

inconsistent in applying criteria for appropriate Grading of Recommendations,

Assessment, Development and Evaluation use. Journal of Clinical Epidemiology.

124, 193–199. doi: 10.1016/j.jclinepi.2020.01.026.

Domene-Martos, S., Rodríguez-Gallego, M., Caldevilla-Domínguez, D. &

Barrientos-Báez, A. (2021) The Use of Digital Portfolio in Higher Education

before and during the COVID-19 Pandemic. International Journal of

Environmental Research and Public Health. 18 (20), 10904. doi:

10.3390/ijerph182010904.

Double, K.S., McGrane, J.A. & Hopfenbeck, T.N. (2020) The Impact of Peer

Assessment on Academic Performance: A Meta-analysis of Control Group Studies.

Educational Psychology Review. 32(2),481–509. doi:10.1007/s10648-019-09510-3.

Giraldo, M.A. & Herold, J.-F. (2023) Development of a New Metacognitive Self-

regulated Model of Competency. In: 23 June 2023 pp. 181–185. doi:

10.36315/2023v1end039.

Gutu, M. (2023a) Flipped Classroom: An Effective Approach For Developing And

Assessing Informatics Competencies. Journal of Social Sciences. 5(4), 45–51. doi:

10.52326/jss.utm.2022.5(4).05.

Gutu, M. (2022a) Improving the Informatics Competencies Through Assessment

for Learning. In: Proceedings of the 12th International Conference on “Electronics,

Communications and Computing", December 2022. Technical University of

Moldova. pp. 300–305. doi: 10.52326/ic-ecco.2022/KBS.04.

Gutu, M. (2022b) Instructional Design for Developing Informatics Competencies.

In: Proceedings of the International Conference on Virtual Learning - VIRTUAL

LEARNING - VIRTUAL REALITY (17th edition), 23 December 2022. pp. 49–61.

doi: 10.58503/icvl-v17y202204.

Gutu, M. (2023b) Metacognition and self-assessment in informatics classes:

exploring the impact of assessment criteria, motivation, and task complexity. In:

Proceedings of the International Conference on Virtual Learning - VIRTUAL

LEARNING - VIRTUAL REALITY (18th edition), 19 October 2023. pp. 243–261.

doi: 10.58503/icvl-v18y202321.

Kumar, S., Kenney, J. & Buraphadeja, V. (2013) Peer Feedback for Enhancing

Students’ Project Development in Online Learning. In: Cases on Online Learning

Communities and Beyond: Investigations and Applications. IGI Global. pp. 345–

360. doi:10.4018/978-1-4666-1936-4.

McMillan, J.H. & Hearn, J. (2008) Student self-assessment: The key to stronger

student motivation and higher achievement. Educational Horizons. 87 (1), 40–49.

Muhammad, A., Lebar, O. & Mokshein, S.E. (2018) Rubrics as Assessment,

Evaluation and Scoring Tools. International Journal of Academic Research in

374 Proceedings of the International Conference on Virtual Learning

Business and Social Sciences. 8 (10), Pages 1417-1431. doi: 10.6007/IJARBSS/v8-

i10/5309.

Nechyporuk, M. & Romaniuk, V. (2024) Methodological Aspects of researching

National Security Students’ Metacognitive control in the Context of Self-regulated

Learning. Scientific Notes of Ostroh Academy National University: Psychology

Series. 1 (17), 46–55. doi: 10.25264/2415-7384-2024-17-46-55.

Panadero, E., Pérez, D.G., Ruiz, J.F., Fraile, J., Sánchez-Iglesias, I. & Brown,

G.T.L. (2023) University students’ strategies and criteria during self-assessment:

instructor’s feedback, rubrics, and year level effects. European Journal of

Psychology of Education. 38 (3), 1031–1051. doi: 10.1007/s10212-022-00639-4.

Simonsmeier, B.A., Peiffer, H., Flaig, M. & Schneider, M. (2020) Peer Feedback

Improves Students’ Academic Self-Concept in Higher Education. Research in

Higher Education. 61 (6), 706–724. doi: 10.1007/s11162-020-09591-y.

Stevens, D. D. & Levi, A. (2005) Introduction to rubrics: an assessment tool to

save grading time, convey effective feedback, and promote student learning.

Sterling, Va, Stylus.

Verano-Tacoronte, D., Bolívar-Cruz, A. & González-Betancor, S.M. (2015) Self-

assessment: A critical competence for Industrial Engineering. DYNA. 82 (194),

130–138. doi: 10.15446/dyna.v82n194.47097.

Weiss, K. (2018) Student Self-Assessment Re-assessed. Journal of Academic

Writing. 8 (2), 161–175. doi: 10.18552/joaw.v8i2.448.

Westover, J. (2024) Better Decisions Through Self-Reflection and Assessment.

Human Capital Leadership Review. 12 (3). doi: 10.70175/hclreview.2020.12.3.11.

Wong, H.M. & Taras, M. (2022) Student Self-Assessment: An Essential Guide for

Teaching, Learning and Reflection at School and University. 1st edition. London,

Routledge. doi: 10.4324/9781003140634.

Xia, X. (2023) Exploration and Practice of Flipped Classroom Model in Education

Research Methods Course Based on Blended Learning. In 2023 International

Conference on Computer Applications Technology (CCAT). 15 September 2023

Guiyang, China, IEEE. pp. 243–247. doi: 10.1109/CCAT59108.2023.00052.

Yan, Z., Chiu, M.M. & Ko, P.Y. (2020) Effects of self-assessment diaries on

academic achievement, self-regulation, and motivation. Assessment in Education:

Principles, Policy & Practice. 27 (5), 562–583. doi:

10.1080/0969594X.2020.1827221.

Yancey, K.B., Cambridge, B. & Cambridge, D. (2023) Electronic Portfolios 2.0:

Emergent Research on Implementation and Impact. 1st edition. New York,

Routledge. doi: 10.4324/9781003444428.

