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Abstract: This paper presents a model for rapid assessment of fundamental notions from 

an academic course and its implementation using the Python language. The model has two 

types of users: professor and student. The professor can enter test items along with answer 

options, and students must respond in a limited time to a test generated using genetic 

algorithms. The items are stored in a database to be used as a starting point for the test 

generator. To avoid the similarity of the tests, the items and answer options are permuted, 

thus obtaining results that correctly and impartially reflect the engagement in the course. 
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1. Introduction 

In the current conditions, great emphasis is placed on students' attention to 

courses. Thus, considering the means of communication such as mobile phones, 

tablets, laptops that can become means of disrupting attention to courses, the 

problem arises of motivating students to actively participate, engage in the course 

and acquire minimal knowledge. In this sense, rapid tests can be a solution to solve 

this problem. 

In order to spend as little time as possible in order to design and implement 

time these tests, a rapid mechanism is also needed for this. Testing can be done 

either through mobile devices or through other devices that have access to the 

Internet. In addition, the way the tests are composed must consider the limited 

response time. This problem can be solved by using items with multiple-choice 

answers. 

The model that we will present in the following sections contains a 

mechanism for entering items and answer options into a database along with a list 

of courses in which they can be used (courses are numbered with consecutive 

numbers: 1, 2, 3, ...). Another component of the model is the selection of items to 

obtain a test by the professor. The created test is then transformed with genetic 

algorithms into as many tests as there are students by permuting the items and 
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within each item by permuting the answers. In this way, the correctness of the 

testing and the obtaining of objective results are ensured. The last component is the 

testing that involves the students and the testing mechanism. The results are stored 

in a database and automatically sent by email to the students, and the teacher is sent 

various statistics related to these results. 

These quick tests can also be integrated into more complex platforms such as 

those presented in (Early Education Nation, 2024) and (Homeschool Solutions, 

2024). Also, the generation process can take more into account pedagogical 

aspects, such as Bloom’s Taxonomy (Rahim et al., 2017) or other academic criteria 

(Yildirim, 2010) and may be applied on several items or educational domains (Kim 

et al., 2021). In order to assess better the literature extent of the subject, a short 

quantitative search was made using the database Dimensions.ai. A map of the most 

used and relevant terms was obtained, shown in Figure 1. 

 

Figure 1. The term map obtained in the literature research 

These terms represent key concepts associated with the generation of 

educational tests using genetic algorithms, and are classified by the number of 

occurrences and relevance score. Terms such as “student” (408 occurrences), 

“education” (349), and “research” (298) suggest that the educational field and 

research in this context are central aspects. At the same time, technical terms such 

as “algorithm” (114), “machine learning” (64), and “model” (215) indicate a close 

connection with advanced computational methods. Interestingly, terms with a high 

relevance score, such as “reader” (3.3968) and “volume” (2.8065), may reflect 

important factors in the analysis of test generation, perhaps in the context of 

educational resources or user interaction. The presence of terms such as assessment 

and performance indicate an emphasis on the evaluation and quality of the 

generated tests, which suggests that genetic algorithms are used not only for 

automation, but also for the optimization of the educational process. 
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2. Model presentation 

The model will have three main components: 

- Items 

- Eval 

- Verif 

The first component Items presented in figure 1, contains a mechanism for 

the insertion of items within a database. The items have several components, such 

as the statement, the answer choices (a common item format such as single-answer 

Multiple-Choice Question – MCQ – was used, with 4 choices and one of them 

being the correct answer) and a list of courses that can be used for assessment (1, 2, 

3, …), as well as a mechanism for selecting from the database the items preferred 

by the professor for the assessment and building the assessment test specific to the 

current course. By using a genetic algorithm for selecting the items and permutting 

the answer choices, a number of tests equal to the maximum number of students 

who can be present at the course is created. 

 

 

 

 

 

 

 

 

Figure 2. The Items component in the model 

The second component, Eval, is the assessment component, shown in  

Figure 3, in which the student logs in and receives the test, selects the choices they 

consider correct and submits them to a database with answers. 

 

 

 

 

 

 

Figure 3. Eval component in the model 
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The third component, Verif, is managed by the professor, shown in Figure 4, 

to transmit the answers to the students and to produce various useful statistics for 

the courses to follow. 

 

 

 

 

 

Figure 4. Verif component in the model 

The three components of the presented model can be integrated into a web or 

mobile platform to obtain a complex application with many e-learning features, 

such as those in (Popescu et al., 2023), (Hamidi et al., 2011) and (Popescu et al., 

2021a). 

3. Implementation 

In order to assess the efficiency of the model, several aspects of the model 

were implemented using a Python-based implementation, especially related to the 

assessment test generation. For the other aspects of the model, such as Eval and 

Verif, a separate implementation was used. 

In order to determine the efficiency of the Items component, a Python 

implementation was made, with a number of 1000 (n = 1000) of items established 

in the database. The numeric measurement of the fastness and the variety 

characteristics of the algorithm was determined using a specific form of the fitness 

function. The form of the fitness function is shown in Equation (1). 

      (1) 

where: 

• ET is the total entropy of the test, where the entropy measures the total 

measurement of the permutation of the choices of all items. The entropy of 

each item is the total number of inversions made to the choices reported to the 

total number of the possible inversions of all choices of the item. This entropy 

is calculated based on the permutation of the choices and using permutation-

based computations. Thus, given an item qi and its set of choices V = {v1, v2, 

…, vl}, with l being the total number of choices, an initial order of choices O = 

(v1, v2, …, vl) and a permutation of the order P = (vπ(1), vπ(2), …, vπ(l)), where π 

is a permutation of the indices {1, 2, …, l}, an inversion is considered made 

when two choices (vj, vk) exist such j < k and π(j) > π(k). Thus, the number of 

inversions made for an item qi (Ii) and the total number of possible inversions 

(Imax) can be determined with the next relations:  
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 and , 

 

where 1(condition) is an indicator function which has the value 1 if the 

condition is true and 0 otherwise. This part of the fitness function determines 

the tests whose items are the most different from the initial items extracted 

from the database after the choices of the test items are permutted (item choice 

variation): 

,        

 

For example, for an item with l = 4 choices with the initial order O = (A, B, C, 

D) and the permutation P = (C, A, D, B), the original indexation would be A = 

1, B = 2, C = 3 and D = 4 and the permutation is indexed as P = (3, 1, 4, 2). 

Each pair is then verified (e.g., (A, C) is considered inversion because C is 

after A in the permutation). The number of inversions Ii and Imax are then 

computed using the described relations, resulting a total entropy of the item 

being equal to 4 / 6 (0.67). Another version of inversions may be considered 

when a choice is set on a different index then the original one. This case will 

be treated in future research papers. 

• MT is the normalized value of the difference between the value of the 

calculated total time of the test and the time desired and given by the user 

(TG). This part of the fitness function determines the closest tests to a given 

time by the user (time restriction). 

,        

• w1 and w2 are the weights of the two parts of the fitness function and help the 

user to obtain tests giving greater importance either to item choice variation or 

time restriction, w1, w2 in [0,1]. The weights are used to give equal or different 

importances to the two parts of the fitness function (e.g., if the user desires the 

generation of a test with items which would have a greater degree of 

permutation, the choices being more disordered than the original order, then 

w1 would have a greater value; if the user desires a test that would have a 

solving time closer to a given one, then w2 would have a greater value). 

Using this function, the user can obtain tests considering the two main 

important characteristics of the test: choice variety and total solving time. Using 

this form of the fitness function, the implementation was built and several trials for 

the parameters of the generation mechanism of the component Items were made. 

Firstly, the interface of the implementation of the Items components is shown  

in Figure 5. 
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Figure 5. The implementation of the Items component 

There were four characteristic that were studied for the efficiency of the 

generation mechanism: (1) convergence; (2) robustness; (3) performance for 

various parameter values; and (4) fitness distribution. 

Firstly, the convergence of the algorithm was determined. For that, the 

genetic algorithm was run for a random set of parameters: 

• the size of initial population (NP) is 71; 

• the number of generations (NG) is 155; 

• the number of items in the test (m) is 10; 

• the crossover rate (rc) is 0.42; 

• the mutation rate (rm) is 0.67; 

• the total test time (TG) is 29 minutes; 

• the values of w1 and w2, as they are explained above, are 0.3 and 0.7; 

these values have the meaning that the user desires a test that would 

respect to a greater extent the desired solving time opposing to the 

entropy (disorder) of the choices of the items that form the test; the 

choice of the value was randomly set; 

• the number of the best individuals selected at each generation (S) is 9. 

For a single run of the genetic algorithm, the best fitness value for this is 

0.96, while fitness values are comprised between 0 and 1. The values of the fitness 

function were calculated after each generation, in order to determine the 

convergence of the algorithm. In this matter, the obtained values are presented in 

the next figure. 
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Figure 6. The convergence of the genetic algorithm 

We can observe that the value of the fitness grows with each generation, 

with a minimun of 0.81 and a maximum of 0.96, reached at the final generation, 

meaning that the algorithm approaches a global optimum. The convergence rate for 

the fitness values is approximately 0.004. This indicates that the changes between 

consecutive fitness values are quite small, suggesting that the algorithm is 

approaching a point of stability and converging towards an optimal solution. 

In order to determine robustness, we have calculated the statistical indicators 

after a set number (100) of genetic algorithm runs. For each run, the best 

chromosome obtained after the final generation was selected. The statistical values 

obtained for the 100 runs of the genetic algorithm provide an overview of its 

performance. The average fitness of 0.9395 indicates that the algorithm tends to 

reach consistently good quality solutions, with an overall performance that is close 

to optimal. The standard deviation of 0.0198 suggests a relatively small variation 

between the fitness obtained in each run, which indicates a stable and efficient 

convergence of the algorithm. It does not produce large fluctuations in 

performance, which may be a sign that the algorithm stabilizes quickly towards an 

optimal solution. The minimum fitness of 0.8609 and the maximum fitness of 

0.9650 show that there is some variation, but that the solutions obtained are 

generally very close to the maximum possible value. In conclusion, these indicators 

suggest that the genetic algorithm used is efficient and convergent, with consistent 

performances and close to ideal solutions. 

In order to determine the behaviour of the algorithm for specific values of 

the parameters, we have established specific values of these parameters, while a 

selected one was changed progressively. For the general setup, the values of the 

parameters were established to be NP = 50, NG = 50, m = 10, rc = rm = 0.5, TG = 

30, w1 = w2 = 0.5 and S = 10. The fitness values obtained for progressive (with a 

growth rate g) values of selected parameters were obtained. The selected 

parameters were NP (with g = 10, 50 runs), NG (with g = 10, 100 runs), m (with g 

= 1, 100 runs) and w1 (with g = 0.01, 100 runs). The values obtained for the given 

setup are shown in the next figures. 
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Figure 7. Values of fitness function for different values of NP, NG, m and w1 

The dependance of the algorithm has a strong connection with the 

parameters. The correlations are established as follows: 

• The correlation coefficient of 0.1265 suggests a very weak positive 

correlation between NP and f. That is, there is a positive relationship 

between these two variables, but it is very weak and probably not 

statistically significant; 

• NG and f have a positive correlation of 0.6297. This means that as NG 

increases, f tends to increase as well, but the relationship is moderate. A 

correlation of 1 would indicate a perfect linear relationship, so this 

suggests a moderate association between the two variables; 

• m represents the number of questions in a test, and f represents the 

fitness value. A correlation coefficient of -0.8889 suggests a strong 

inverse relationship between the two variables. That is, as m (the number 

of questions) increases, f (the fitness value) decreases in a fairly 

consistent manner. The decrease may be also determined as the time 

(TG) was set to the double of questions, while the number of items 

increases; 

• The correlation coefficient of -0.1819 indicates a weak negative 

correlation between w1 and f. That is, there is a negative relationship 

between these two variables, but this relationship is quite weak and 
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probably not statistically significant. This may mean that this suggests 

that, in general, response permutations that receive a higher weight do 

not lead to better genetic algorithm performance. 

As for the Eval and Verif components, the implementation captures the 

mechanism of test solving and assessment performance. Screenshots of 

implementations related to these two components are shown in the next figure. 

    

Figure 8. Implementation of Eval and Verif 

The model's effectiveness is constrained by the lack of empirical validation 

for fitness function parameters, limiting adaptability across educational contexts. It 

also relies on predefined question structures, restricting flexibility for open-ended 

assessments. Additionally, scalability challenges may arise in large-scale appli-

cations, and comparisons with existing AI-based test generation tools are needed. 

In conclusion, the model appears to be very consistent and performant, 

especially related to Items component and is achieving good results with little 

variation between runs. The average fitness of 0.9395 is very good, and the small 

standard deviation suggests that the algorithm is robust and does not generate very 

poor solutions. However, there is room for possible improvements, such as 

optimization to achieve higher fitness values in each run. 

4. Conclusions and future work 

Future research should refine the fitness function, integrate the model into e-

learning platforms and enhance scalability in large-scale educational assessments. 

Comparative studies with machine learning-based approaches would further assess 

its effectiveness in adaptive testing environments. One key direction is refining the 

fitness function by incorporating dynamic weighting mechanisms based on learner 

profiles and real-time performance data. Lastly, the three components of the 

presented model can be integrated into a web or mobile platform to obtain a 

complex application with many e-learning features, such as those in (Popescu et 

al., 2023), (Hamidi et al., 2011) and (Popescu et al., 2021a). 
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